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A B S T R A C T

We have studied the sensitivity to cryoprotecting agents of different embryos of the local sea urchin, Echinometra
lucunter which is the species used for embryo-larval bioassays in Brazil. We have located significant differences
between both species sensitivity to cryoprotecting agents; while for P. lividus propylene glycol was the less toxic
compound for most development stages, whereas for E. lucunter is was the most toxic and the least toxic was
Dimethyl sulfoxide. There is a significant difference between development stages as well; in the case of P. lividus,
the blastula embryo was the most resistant to the cryoprotecting agents, meanwhile for E. lucunter, it was the
fertilized oocyte. This is a very promising result, a really early embryo that is not extremely sensitive to Me2SO.
Our next aim is to develop a cryopreservation protocol for E. lucunter early embryos and test them in an embryo-
larval bioassay.

1. Introduction

Echinometra lucunter is a tropical sea urchin with great ecological
importance and which populates the Brazilian coast, particularly in the
south and southeast in high densities [18].

Sea urchins have been extensively used in ecotoxicology assays in
the last decades. Current strategies of water quality assessment in-
tegrate the chemical analysis with biological parameters to evaluate the
effects of pollution on living resources [8–10,12]. Due to the sensitivity
of the early stages of development to pollutants present in seawater-
even at very low concentrations-sea urchin embryo-larval bioassays
have been routinely used for water quality assessment for decades.

Toxicity bioassays consist on the exposure of a representative
amount of organisms to a range of chemical concentrations or field
samples and to register/quantify the effects (the endpoint can be any
quantifiable response that can be related to the chemical dose or ex-
posure) over a fixed period of time [17,30]. Sea urchins present nu-
merous advantages for ecotoxicological studies due to their abundance,
wide distribution, easy recollection and low laboratory maintenance
[15]. Sea urchin larvae were firstly proposed as water quality indicator
in the early 1950's by Wilson [29].

The application of these biological techniques to environmental
monitoring presents several advantages: bioassays integrate the effects
of all substances present in a complex mixture [16], including inter-
actions among substances, they provide predictions and early warning

of environmental impacts, serving as diagnostic tools [28]. Cause-effect
relationships can be examined by dose response experiments with in-
dividual substances or with water or sediment dilution series [16], a
great number of response variables can be examined over different
exposure times, effects on different biological organization levels can be
predicted [16] and results can be used to develop water quality criteria
[30].

Methodological advances in cryopreservation procedures for marine
organisms [31] may be a solution to overcoming the constraint of the
reproductive seasonality in embryo-larval bioassays and provide bio-
logical material available throughout the year [19,20].

The design of a cryopreservation protocol for the cryopreservation
and cryobanking of gametes and embryos to be used for marine quality
assessment could ensure the accessibility to high quality reproductive
material all year round, as an option to conditioning adults for out of
season reproduction, which is a very time consuming and expensive
process [24]. In addition to that, the dependence from field collection is
highly inconvenient (weather issues, punctual pollution events add too
many degrees of uncertainty to the reliable supply) and it has an impact
on the local populations.

The aim of this work is to study the sensitivity of Echinometra lu-
chunter to cryoprotecting agents as a first step to develop a cryopre-
servation protocol for sea urchin cells with ecotoxicological applica-
tions.
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2. Material and methods

2.1. Biological material

Mature sea urchins, E. lucunter, were collected in the Curva da
Baleia beach (Jacaraípe, Serra, Espírito Santo – Brazil) during the
natural spawning season. Animals were transported to the laboratory in
a portable icebox and maintained in aquaria with running natural sea
water until the experiments. Sea urchins were fed with the green algae
Ulva sp.

Gametes were obtained by injecting 1,5 -3 mL of KCl (0,5 M) in the
oral area [1]. At least three males and three females were used in each
experiment. Mature oocytes were transferred to a measuring cylinder
with 100 mL of ASW and their quality was checked under microscope.
Only batches of mature eggs that were spherical and undamaged were
used for the experiments. Sperm mobility was checked under micro-
scope and the sperm solution was stored at 4 °C until use. The sperm
was diluted in ASW (1:49) and 1–2 mL of the sperm solution was added
to the eggs solution for fertilization. After 30 min, the solution con-
taining eggs and sperm was checked under microscope to make sure
that all the eggs were fertilized (by observation of the elevation of the
fertilization membrane).

2.2. Toxicity tests

Toxicity tests were undertaken on the fertilized egg (30 min post-
fertilization) and blastula (6 h post-fertilization). We used in this ex-
periment 0.04 M Trehalose (TRE) as non-permeant CPA in all the so-
lutions and for the permeant CPAs: Dimethyl sulfoxide (Me2SO),
Propylene glycol (PG) and Ethylene glycol (EG) [3,11,23].

Cryoprotecting agents were prepared in ASW and the concentra-
tions selected and methodology were similar to those reported by Ref.
[23] for P. lividus. Concentrations tested, addition methods and ex-
posure times are summarized in (Table 1).

Total time of equilibration with the CPAs never exceeded 15 min.
After the CPA removal, the embryos were rinsed carefully with ASW to
remove the excess of CPA by using a 60 μm mesh, then transferred to
experimental vials with 4,5 mL of ASW and incubated for 36–42 h
(26 °C), until the 4-arm-pluteus stage was reached in controls (n = 5
per treatment).

2.3. Statistical analysis

A one-way ANOVA test (SPSS v.15.0) followed by a Dunnet post-hoc
test was used to determine both the most suitable addition methodology
and the toxicity parameters NOEC (No Observed Effective
Concentration) and LOEC (Lowest Observed Effective Concentration).

3. Results

There are significant differences between the effects of CPA ex-
posure of the two development stages studied, being the fertilized egg

the stage that showed more resistance to CPAs, presenting higher NOEC
levels (Table 2). Exposure to our three selected CPAs (Me2SO, EG and
PG always in combination with 0.04 M TRE) had different effects de-
pending of the methodology of exposure (Table 1, Fig. 1), the best re-
sults have been obtained when using the methodology of equimolar
stepwise addition which yields a total equilibration time of 15 min and
stepwise removal by FSW addition (see normal larvae parameters,
Fig. 2).

The no observed effect concentrations (NOEC) and lowest observed
effect concentrations (LOEC) were calculated for the 15 equimolar
stepwise addition (treatment 1) that in general showed the best results
regarding the percentage of normal larvae development (Table 2). Re-
sults were compared with the NOEC/LOEC data available from Ref.
[23] for P. lividus, having found important differences between the
sensitivity to CPA's between different species for each one of the cell
types (Table 2).

NOEC levels for Me2SO exposure of the fertilized egg is 1.5 M in the
case of E. lucunter but it is lower (1 M) for P. lividus. In the case of PG E.
lucunter shows a similar pattern, NOEC is ˃ 1.02 M but a lower results
was obtained for P. lividus, with a NOEC of 0.68 M. In the case of EG,
NOEC is 0.5 M but P. lividus showed a higher resistance with a NOEC of
1 M.

P. lividus showed higher resistance to CPA exposure in the blastula
stage. In the case of E. lucunter, it is in fact the fertilized egg the most
tolerant cell type to these chemical compounds, showing lover NOECs
for every CPA tested (Table 2).

4. Discussion

It has been proved that the correct selection of both the most sui-
table CPA type and concentration is one key step for a successful
cryopreservation of marine invertebrates [2,23]. In the case of early-
development stages of marine invertebrates, this factor is even more
crucial due to the high sensitivity of those cells to chemicals present in
the water; a quality that makes them an optimal model organisms to be
used in the evaluation of water quality [8,16].

The determination of the optimal CPA is species and development
stage specific [4,14,23,27] our findings reinforce this finding. The be-
haviour after exposure to different CPAs of different cell types from our
local sea urchin species point towards significantly different results
from the same development stages from a different sea urchin species.
Therefore, the differences in sensitivity to the cryoprotecting agents
would determine no only the optimal compound (optimal from the low
toxicity point of view, which might not be offering the maximum
cryoprotection as determined by Refs. [11,23]) and the optimal con-
centration to use, but it will also point towards the most resistant cell
types which would be the target for developing the cryopreservation
protocol.

Table 1
Addition/dilution methodology for CPAs and total equilibration time at room tempera-
ture (20 °C).

Treatment Addition
Methodology

Total equilibration
time (min)

Removal
Methodology

1 15 equimolar steps of
1 min [24]

15 12 equimolar steps of
1 min [24]

2 1 step (5 min of
exposure)

5 1 step

3 1 step (15 min of
exposure)

15 1 step

4 3 equimolar steps 5 3 steps

Table 2
NOEC/LOEC levels calculated for the most successful Addition/removal methodology and
for each CPA, data compared with published data for the same cell types with another
species of sea urchin, P. lividus.

E. lucunter P. lividus [23]

Treatment 1 Treatment 1

15-equimolar step 15-equimolar step

NOEC LOEC NOEC LOEC

Fertilized oocyte Me2SO 1.5 M 2 M 1 M 1.5 M
EG 0.5 M 1 M 1 M 1.5 M
PG ˃1.02 M 0.68 M 1.36 M

Blastula Me2SO ˂ 1 M 1 M 1.5 M 2 M
EG ˂0.5 M 0.5 M 1 M 1.5 M
PG ˂0.34 M 0.34 M 1.36 M 2.04 M
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From our results and previously published research on sea urchin
different cell types, the sensitivity to CPAs varies widely along devel-
opment. Both [3] and [23] pointed out that despite EG being the less
toxic compound to sea urchin cells (fertilized oocyte, blastula and
gastrula), no survivals have been obtained when cryopreserving the
cells using EG as a cryoprotecting agent, both obtained survivals after
choosing Me2SO instead, despite they have described it previously de-
scribed as the most toxic CPA. This points out that it is a very important
to balance the toxicity and the cryoprotection offered by the CPA. With
the exception of some pioneer work published by Ref. [5] with EG as
cryoprotectant, all the embryo/larvae cryopreservation published re-
sults point out that Me2SO will be the most suitable cryoprotecting
agent (Refs. [21,22] with Strongylocentrotus Intermedius, Ref. [7] with
Loxechinus albus, Ref. [3] with Evechinus chloroticus or Ref. [23] with
Paracentrotus lividus). Our research shows in this line great promise due
to the low toxicity to Me2SO showed by the fertilized oocyte.

In addition, some cells are very sensitive to osmotic changes and
therefore we have explored several addition/removal methods. After
testing 4 different methodologies the best results have been obtained
when using the methodology published by Ref. [23] of equimolar
stepwise addition which yields a total equilibration time of 15 min.

Previous experiments with larvae from similar molluscs proved that
using similar organisms and cell types [25,26] one cryopreservation
protocol for one species could be potentially used as step-one to develop
the protocol for another species. Once selected the optimal CPA (with
the optimized balance between toxicity and cryoprotection) and if there

are not major differences in membrane permeability, cell type or cell
size; the optimal cooling rate could still be extrapolated from one
species to another [25,26].

To conclude, this research provides for the first time information
about the sensitivity to cryoprotecting agents for Echinometra lucunter
cells as a first step to stablish a cryopreservation protocol to cryopre-
serve early embryos for water quality assessment purposes. Future
studies will focus on the development and evaluation of a cryopre-
servation protocol, short and long term survival.
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